Pergamon Press plc

CONFORMATIONALLY RESTRICTED LEUKOTRIENE ANTAGONISTS. SYNTHESIS OF SOME LEUKOTRIENE D₄ ANALOGS FROM D-XYLOSE.

Jeffrey S. Sabol* Merrell Dow Research Institute 2110 East Galbraith Road, Cincinnati, Ohio 45215, U.S.A.

Robert J. Cregge Merrell Dow Research Institute 9550 North Zionsville Road, Indianapolis, Indiana 46268, U.S.A.

Summary: Lewis acid catalyzed allylation of diacetyl-D-xylal 2 is stereoselective for β -C-glycoside 2b, a result used in the syntheses of pyrans 8a, b, from D-xylose.

Vhile pursuing approaches to the stereocontrolled syntheses of conformationally-restrlcted LTD_4 receptor antagonists, we became aware of a highly stereoselective route to C_1 -allylated

glycosides bearing C_2-C_3 unsaturation¹ in which reaction of D-glucal triacetate 1 with allyltrimethylsilane (ATMS) under Lewis acid activation led to la and Ib in a ratio of 16:1. We felt that this approach could be used as an entry into the synthesis of novel, conformationally-restricted LTD₄ antagonists. Although reaction of diacetyl-D-xylal 2 with ATMS was expected to lead to the C₁-allylated glycosides $2a$ and/or $2b$, we could not predict with certainty the stereochemical outcome of the reaction.

In this letter, we report that the Lewis acid catalyzed allylation of xylal 2 , in contrast to 1, is highly stereoselective for the β -C-glycoside $2b$, and that this reaction plays a pivotal role in the syntheses of the pyrans $8a$, b (Scheme I).

Thus, reaction of diacetyl-D-xylal 2^2 , with ATMS and 1 equivalent of TiCl, following the reported conditions gave rise in 73% yield to a 14:1 (by GC) mixture of C_1 -allylated glycosides, with 2b ($\{\alpha\}_n^{20}$ + 175° (c 1.79, CHCl₃)) being the major epimer^{1,3} and only regioisomer. Replacement of the acetate group of 2b with a t-butyldiphenylsilyl-ether (TBDPS) in 95% yield for the 2 steps, followed by chemoselective hydroboratlon-oxidation of the terminal olefin, afforded mono-protected diol 3 ($[\alpha]_D^2$ ⁰ + 54°(c 1.34, CHCl₃)) in 74% yield.

The next phase of the synthesis involved adjusting the oxidation state of alcohol 3 prior to **removal** of the TBDPS protecting group. This was achieved with a two-step oxidation procedure followed by an acid catalyzed esterification in which the TBDPS group was concomitantly removed; the allylic alcohol 4 ($[\alpha]_D^2$ ⁰ + 95.3°(c 1.16, CHCl₃)) was obtained in 52% overall yield for the three steps.⁴ Hydroxyl-assisted epoxidation⁵ followed by Swern⁶ oxidation completed the synthesis of 5⁷ ($[\alpha]_D^2$ ⁰ - 12°(c 1.16, CHCl₃)).

The completion of the synthesis utilized our previously published procedure.⁸ Wittig reaction of 5 under lithium-free conditions⁹ was highly stereoselective¹⁰ and afforded E olefin 6 $([\alpha]_D^{20} + 47.2^{\circ}$ (c 0.66, CHCl₃)) in 72% yield. The double bond geometry was determined using Nuclear Overhauser Enhancement (NOE) difference spectroscopy.¹¹ Irradiation of the olefinic signal at δ 5.74 (t, 1H, 7.6 Hz) resulted in enhancement (17%) of the epoxy-methine resonance at δ 3.50 (d, 1H, J=4.4 Hz) in addition to a slight NOE (3.5%) with the allylic methylene resonance at 6 1.94-2.09 (m, 2H). Regiospecific opening of the oxirane 6 with either methyl 3-mercaptoproprionate or methyl 4-mercaptobutyrate produced the di-esters 7a and 7b respectively in 85-90% yield. In both cases only Sw2 products were detected, the olefinic resonance at δ 5.86 (t, 1H) clearly excluding any Sw2'-derived product. Saponification of 7a and 7b respectively in 85-90% yield afforded the di-acids $8a^{12}$ ([α] b^{20} + 26.6° (c 1.02, CHCl₃)) and <u>8b</u>¹² ([α]_D²⁰ + 26.2°(c 1.03, CHCl₃)). In the 300 mHz ¹H NMR, the-CH-OH coupling constants for 8a (J = 8.9 Hz, 9.4 Hz) and 8b (J = 8.9 Hz, 9.8 Hz) both showed two axial-axial couplings to adjacent ring protons, thereby confirming the trans-equatorial relative stereochemistry of the three contiguous stereogenic centers.

In conclusion, an approach to rigid LTD₄ analogs 8a, b from D-xylose is outlined. These conformationally-restricted analogs effectively antagonized LTD₄ induced contractions of guinea pig ileum in vitro. 13

Acknowledgements: We thank Dr. Michael Uhalon (MDRI-Indianapolis) and Robert J. Barbuch (MDRI-Cincinnatl) for their assistance in obtaining analytical data, and Dr. Tim Burkholder (MDRI-Cincinnati) for helpful discussions.

Scheme I

CONDITIONS: a) Ac₂O,HBr,O'; b) Zn,5O%HOAc; c) CH₂=CHCH₂Si(CH₃)₃, TiCl₄, CH₂Cl₂, -20; d) NaOMe, MeOH, rt; e) TBDPS-Cl, imidazole, DMF,rt; f) $9 - BBN$, THF, $\Delta(1.5h)$, then 30% H₂O₂, NaOH, EtOH,50°(1h); g) $(COCI)_2$,DMSO,CH₂Cl₂,Et₃N,-70°→rt; h) Ag₂O,NaOH,EtOH,rt(1h); i) $_{\text{CH}_3O} \times_{\text{OCH}_3}$,p-TsOH(cat.), CH₃OH,45°(5h); j) MCPBA,NaHCO₃,CH₂Cl₂,rt(20h); k) KN(TMS)₂,
THF,HMPA,CH₃(CH₂)₁₂ CH₂P ϕ_3 Br⁹,−70'→rt; i) HS(CH₂)_nCO₂CH₃, $Et_3N, MeOH,rt(18h); m) KOH, EtOH,H_2O,rt(6h).$

6273

REFERENCES AND NOTES

- Danishefsky, S.; Kerwin, J.F. J. Org. Chem. 1982, 47, 3803. $1)$
- Weygand, F. "Methods in Carbohydrate Chemistry," Vol. 1, Academic Press, New York, $2)$ (1962) , 182.
- Dawe, R.D.; Fraser-Reid, B. J. Chem. Soc., Chem Commun. 1981, 1180. This paper uses $3)$ triacetylglucal as an alkylating agent with respect to the trimethylsilyl enol ether of acetophenone.
- This alcohol had identical olefinic couplings in the 300 MHz ¹H NMR as alcohol II 4) $((\alpha)_p^{20} + 93.4^{\circ} (c\ 1.19, CHC1_3))$, which was prepared by stereoselective C-glycoside
formation via Claisen rearrangement of I, thus confirming the assignment of stereochemistry of 4 and 2b.

- Henbest, H.B., Proc. Chem. Soc. 1963. 159. 5)
- Omura, K.; Swern, D. Tetrahedron, 1978, 34, 1651. 6)
- ¹H NMR (300 MHz, CDC1₃) δ 2.01 (m, 2H), 2.52 (m, 2H), 3.41 (d, 1H, J = 4.2 Hz), 3.57 (dd, 1H, J = 1.1 Hz, 4.2 Hz), 3.70 (s, 3H), 3.91 (d, 1H, J = 16.7 Hz), 4.15 (brdd, 1H, J = 1.1 Hz, 4.5 Hz, 9.5 Hz), 4.17 (d, 1H, J $7)$
- Sabol, J.S., and Cregge, R. J. Tetrahedron Lett., in press. $8)$
- (a) Sreekumar, C.; Darst, K.P.,; Still, W.C. J. Org. Chem. 1980, 45, 4260 (b) 9) Koreeda, M.; Patel, P.D.; Brown, L., J. Org. Chem. 1985, 50, 5910.
- 10) A ratio of 7/1 was determined on the crude product by TLC and 60-MHz ¹H NMR.
- The NOE difference spectroscopy experiment was done on a Varian 300 MHz spectrometer by 11 Dr. Edward Huber of MDRI, Cincinnati.
- 12) These compounds gave satisfactory spectral (IR, MS, NMR) and elemental analyses.
- 13) Dr. T.H. Gieske (MDRI-Cincinnati), unpublished results.

(Received in USA 25 July 1989)